Wound Care 101 - Debridement

Everything you always needed to know but didn’t want to ask

Speakers
Eva M. Sauls RN BA CWOCN
Vicky Valenski PT, DPT, CWS

Objectives for Wound Debridement

Will be able to discuss:
- Wound bed preparation – TIME as it relates to debridement
- Types of wounds that need to be debrided
- Types of wounds that do NOT need debridement
- Types of debridement
- When to use, or not use, different types of debridement
- Tools and PPE to use with sharp debridement

Wound Bed Preparation and TIME

Wound Bed preparation identifies major components of chronic wound care
System developed using the acronym TIME
- Tissue - Debridement
- Inflammation vs Infection - Maintenance of bacterial balance
- Moisture Imbalance - Exudate management
- Edge of wound
Removing the barriers allows for optimal wound repair and healing

TIME and Debridement

The TIME System for Wound Bed Preparation

<table>
<thead>
<tr>
<th>Clinical Observations</th>
<th>Pathophysiology</th>
<th>Clinical Actions</th>
<th>Effect of Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Tissue nonviable</td>
<td>Defective matrix and cell debris</td>
<td>Debridement</td>
<td>Restore wound base matrix proteins</td>
</tr>
<tr>
<td>I Infection, inflammation</td>
<td>High bacterial count, prolonged inflammation</td>
<td>Topical/systemic antimicrobials</td>
<td>Low bacterial counts and inflammation</td>
</tr>
<tr>
<td>M Moisture imbalance</td>
<td>Dry or excess fluid</td>
<td>Moist balancing dressings, compression</td>
<td>Restore cell migration, avoid maceration</td>
</tr>
<tr>
<td>E Edge of wound undermining</td>
<td>Impairment epithelial edge</td>
<td>Debridement, skin graft</td>
<td>Stimulate cell migration</td>
</tr>
</tbody>
</table>

International Advisory Board on Wound Bed Preparation

Types of Debridement

- Autolytic debridement
- Mechanical debridement
- Enzymatic debridement
- Biodebridement
- Selective Sharp debridement
- Surgical debridement

Autolytic Debridement

Definition – Using the body’s own mechanisms to remove nonviable tissue.
Need adequate blood flow to wound bed & good nutrition
How it works
- Moisture retentive dressings
 - Transparent films
 - Hydrocolloids
- Wound fluid
 - Endogenous proteolytic enzymes
 - Inflammatory cells
Autolytic Debridement (cont.)

Benefits
- It is a selective process and does not harm healing tissue
- Less technical skill – can be done by caregivers
- Typically pain free and less stressful
- Can be used in conjunction with mechanical or sharp debridement to speed results
- Is an option when more aggressive treatments aren’t feasible

Disadvantages
- It is still the slowest form of debridement – it can take weeks
- Contraindicated in infected wounds
- Can damage surrounding intact skin
- Odor

Mechanical Debridement

Definition – Using an outside force to remove dead tissue. **Physically removes debris** from the wound bed.

Methods
- Wet to dry dressing
- Irrigation
- Pulsatile Lavage With Suction (PLWS)

Mechanical Debridement

Wet to Dry

Benefits
- Old and familiar
- Readily available anywhere, to anyone
- Can be used by caregivers

Disadvantages
- Non-selective – removes fragile, healthy tissue
- Painful
- Frequency of dressing changes causes:
 - Wound cooling
 - Vasoconstriction
 - Hypoxia
 - Increased cost of staff time and supplies

Disadvantages continued
- Moisture balance not maintained
- May cause surrounding tissue to become macerated or denuded
- May cause wound bed to become desiccated
- Provides no barrier to bacteria
- Removal disperses bacteria into the air
- Fibers left in wound bed
- Often used incorrectly

What is gauze good for?
Cleaning the periwound
Mechanical Debridement

Irrigation
- Basically a wound rinse
 - Should be done for most all dressing changes
 - More a rinse than a debridement
 - Uses a large syringe to wash out the wound
 - Saline
 - Sterile water (if following with a silver product)

Pulsatile Lavage With Suction
- Irrigation up to 15 psi
- Suction between 60-100mmHg
- Uses NS which should be warmed to 80-85° F
- Single patient, multi use device
- Can soften & loosen non-viable tissue prior to sharp debridement
- Coded as selective debridement

Indications
- Chronic wounds
- Infected wounds
- Wounds with non-viable tissue or debris
- Desiccated wounds
- Wounds located on edematous limbs

Contraindications
- Patients with an INR > 3.0
- Pain with procedure
- Acute bleeding
- Patients on anti-coagulants
- Insensate patients

Precautions continued
- Wounds near major vessels, nerve, tendon or bone
- Wounds near a cavity lining
- Bypass graft sites
- Grafts and flaps
- Facial wounds
- Suspicion of osteomyelitis

Benefits
- Cleans and debrides
- Reduces bacteria
- Stimulates circulation
- Promotes granulation
- Reduced wound cooling
- Generally well tolerated
- Can be used in tunnels, tracts and undermining
- Reusable on single patient for 1 week
Mechanical Debridement

Pulsatile Lavage With Suction (cont.‘)

- **Disadvantages**
 - Requires wall or portable suction
 - Need a place to hang saline
 - Set up & cleaning takes longer than treatment
 - Some patients have anxiety over “Power Washing” their wound

Enzymatic Debridement

Definition - Is a topical ointment that uses enzymes that break the peptide bonds in collagen.

- **Applied:** nickel thick with daily dressing changes.

Benefits

- Selective – only works on nonviable tissue
- Can be applied by patient or caregiver
- Safe, effective, and easy to use.
- Should be painless
- Wound trauma reduced
- Highly effective combined with other techniques such as PLWS or sharp debridement.

Considerations:

- Consider use for the patients who can not tolerate sharp or surgical debridement
- Observe caution with infected wounds
- Requires moisture to work
- Works from the bottom up

Disadvantage:

- Only product currently available in the US is Santyl.
- Prescription drug that has to be ordered by the doctor
- Is expensive even when insurance covers it. Most co-pays are about $80/tube. (Call your local Santyl Rep to help you.)
- Can be slow

Biodebridement

AKA Maggot Therapy

History

- Baron Larrey – Physician to Napoleon’s armies ~ 1800
- J. F. Zacharias – a surgeon in the Confederate Army during the Civil War in the 1860’s
 - “During my service in the hospital at Danville, Virginia, I first used maggots to remove the decayed tissue in hospital gangrene and with eminent satisfaction. In a single day they would clean a wound much better than any agents we had at our command. I used them afterwards at various places. I am sure I saved many lives by their use, escaped septicemia, and had rapid recoveries.”

Using maggots for wounds

- Maggot Therapy
- Maggot Debridement Therapy – MDT
- Larva Therapy
- Larval Therapy
- Biodebridement
- Biosurgery

Sterile not sterile
Biodebridement (cont.)

Used extensively in US hospitals in the 1930s & 1940s
Abandoned by the mid 1940’s with the introduction of antibiotics & aggressive surgical debridement coming out of World War II
Reintroduced in US in late 1980’s, followed by UK, Israel & Europe

Mechanism of action
– Combined mechanical & chemical debridement
 • Mouth hooks pierce & tear necrotic tissue to facilitate penetration of enzymes
 • Secrete proteolytic digestive enzymes which dissolve necrotic tissues
– Stimulate healthy tissue growth
– Breakdown & inhibition of biofilm

Biodebridement (cont.)

Disinfect the wound
Maggots ingest bacteria from the wound which is killed as it passes through the digestive tract (including Escherichia coli)
Ammonia excreted as a waste product increases pH of wound, creating an alkaline environment unfavorable to many bacterial species

Indications
– Necrotic wounds
 • Pressure Ulcers
 • Venous stasis ulcers
 • Neuropathic foot ulcers
 • Post surgical wounds
 • Traumatic wounds

Contraindications
– Allergy to fly larvae
– Acute, advancing infection
– Infected bone or tendon without surgical or antibiotic treatment
– Wound not exposed to outside
– Ischemic limb
– Natural or pharmacologically induced coagulopathy
– Exposed deep organs or structures

Disinfect the wound
Maggots ingest bacteria from the wound which is killed as it passes through the digestive tract (including Escherichia coli)
Ammonia excreted as a waste product increases pH of wound, creating an alkaline environment unfavorable to many bacterial species

Indications
– Necrotic wounds
 • Pressure Ulcers
 • Venous stasis ulcers
 • Neuropathic foot ulcers
 • Post surgical wounds
 • Traumatic wounds

Contraindications
– Allergy to fly larvae
– Acute, advancing infection
– Infected bone or tendon without surgical or antibiotic treatment
– Wound not exposed to outside
– Ischemic limb
– Natural or pharmacologically induced coagulopathy
– Exposed deep organs or structures

Disinfect the wound
Maggots ingest bacteria from the wound which is killed as it passes through the digestive tract (including Escherichia coli)
Ammonia excreted as a waste product increases pH of wound, creating an alkaline environment unfavorable to many bacterial species

Indications
– Necrotic wounds
 • Pressure Ulcers
 • Venous stasis ulcers
 • Neuropathic foot ulcers
 • Post surgical wounds
 • Traumatic wounds

Contraindications
– Allergy to fly larvae
– Acute, advancing infection
– Infected bone or tendon without surgical or antibiotic treatment
– Wound not exposed to outside
– Ischemic limb
– Natural or pharmacologically induced coagulopathy
– Exposed deep organs or structures
Biodebridement (cont.)

- Considerations
 - Containment
 - WB surfaces
 - Airflow
 - Drainage

- Sources
 - Monarch Labs, Irvine, CA (loose)
 - BioMonde, Gainesville, FL (contained)

The Yuck Factor

- Patient acceptability of larval therapy for leg ulcer treatment… Petherick et al. 2006
 - 41 subjects with leg ulcers
 - 77% would consider maggot therapy
 - No evidence of widespread resistance

Sharp vs. Surgical

- Conservative sharp debridement is the selective removal of clearly identified non-viable tissue using scalpel, scissors and/or forceps with little to no bleeding and is appropriate for select wounds that are covered partially or fully with non-viable tissue.

- Surgical debridement is the removal of non-viable tissue and may also include anesthesia, bleeding and the removal of viable tissue, it is performed by a surgeon.

Surgical debridement (cont.)

- Indications
 - Wide excision is required
 - Very large area requiring debridement
 - Structural involvement
 - Tendons
 - Bone
 - Vessels
 - Nerves
 - Fascia
 - Joints
 - Viscera

- Suspected structural involvement
- Wound crosses fascial plane
- Anesthesia is required
- Presence of abscess, undermining our tunnel requiring exploration/opening/draining
- Small wound opening with large wound base

Why Debride?

- Non-viable tissue
 - Eschar
 - Thick, leathery
 - Tan, brown, black
 - Slough
 - Loose or adherent, stringy
 - Grey, yellow, green
 - Callos
 - Hides the base of the wound
 - Promotes bacterial growth
 - Impedes the healing process
When not to debride as a PT

- Surgical debridement is indicated
- Acute untreated systemic infection
- Clotting disorders and/or anticoagulation therapy with an INR > 3.0
- Wounds with dry stable eschar on the heel or covering a non-infected wound on an ischemic extremity.
- Ischemic limb with severe arterial insufficiency or with dry gangrene

When not to debride

- When you can’t fully see the area that needs debriding
- When there is concern about proximity to underlying structures

Cautions

- Know your anatomy
- Avoid structures
 - Tendons
 - Bone
 - Vessels
 - Nerves
 - Fascia
 - Joints
 - Viscera

STOP!

- Excessive bleeding
 - Pressure
 - Calcium alginate
 - Silver nitrate
- Excess pain
- Facial layer
- Exposed joint
- Patient or clinician fatigue

Tools

- Scalpel
 - Crosshatching – used on eschar prior to use of topical agents to soften prior to further debridement
 - Shaving – to remove thin layers
 - Cutting – to remove larger pieces when you won’t cut into viable tissue
- Scissors
 - Another method to cut off larger pieces
Tools (cont.)

- **Curette**
 - Smaller areas or thin surface slough
 - Roughen small areas with rolled edges
- **Forceps**
 - Picking out loose bits of slough or debris
 - Holding tissue to cut with scalpel or scissors

PPE

- **Gown**
- **Gloves**
- **Mask with face shield**

References

- Sussman C, Bates-Jensen B.M. Wound Care 2nd ed.; 2001 Gaithersburg, MD
- Wound, Ostomy and Continence Nursing Secrets; C. Milne, L. Corbett, D. Dubic. 2003 Philly PA
- Kiesner D. Chronic Wound Care: The Essentials; 2014 Malvern, PA
- Workshop: Sharpen Your Debridement Skills; Scarborough P, Patterson G. 20th Clinical Symposium on Advances in Skin and Wound Care 2015 Las Vegas NV

References (cont.)

- Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy. Sherman RA; Diabetes Care. 2003 Feb;26(2):446-5

Questions

Debridement – Hands On
Let’s get started ! !